
Zyfi Paymasters
Security Review

Cantina Managed review by:
Riley Holterhus, Lead Security Researcher
Chris Smith, Security Researcher

February 29, 2024

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3

3 Findings 43.1 Medium Risk . 43.1.1 verifier signatures can be replayed . 43.2 Low Risk . 53.2.1 No way to reset a protocol to use the defaultMarkup . 53.2.2 withdrawETH can be blocked . 53.2.3 renounceOwnership implementation can block onlyOwner functions 53.3 Gas Optimization . 63.3.1 Gas savings . 63.4 Informational . 73.4.1 Trust assumption considerations . 73.4.2 Refunds can be inaccurate . 83.4.3 Sponsorship refunds may fail . 83.4.4 No events are emitted in setMarkup() . 93.4.5 setVerifier lacks address(0)-check . 9

1

1 Introduction

1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment

Severity Description

Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

2 Security Review Summary

Zyfi is a set of tools that leverages zkSync's native account abstraction to provide a seamless on-chainexperience to users. Zyfi offers a full-stack solution ranging from a front-end to an API that lets any dApppropose gasless transactions, enabling users to pay with any ERC-20 tokens. Protocols can also decide tosponsor part or all of a user transaction according to their custom off-chain logic.
From Feb 12th to Feb 13th the Cantina team conducted a review of zyfi-paymaster on commit hashe38bf16a. The team identified a total of 10 issues in the following risk categories:

• Critical Risk: 0
• High Risk: 0
• Medium Risk: 1
• Low Risk: 3
• Gas Optimizations: 1
• Informational: 5

3

https://github.com/ondefy/zyfi-paymaster
https://github.com/ondefy/zyfi-paymaster/tree/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d

3 Findings

3.1 Medium Risk
3.1.1 verifier signatures can be replayed

Severity: Medium Risk
Context: ERC20Paymaster.sol#L198-L208, ERC20SponsorPaymaster.sol#L268-L280
Description: In the Zyfi Paymaster flow, users pay Zyfiwith their ERC20 tokens, and Zyfi pays for the users'transaction costs in return. To ensure that Zyfi actually agrees to the terms of this exchange, a signaturefrom Zyfi's verifier account is validated in the validateAndPayForPaymasterTransaction() function:
if (

!_isValidSignature(

signedMessage,

address(uint160(_transaction.from)),

address(uint160(_transaction.to)),

token,

amount,

expirationTime,

_transaction.maxFeePerGas,

_transaction.gasLimit

)

) {

magic = bytes4(0);

}

Notice that this code snippet only verifies the from, to, maxFeePerGas and gasLimit parameters of the
_transaction object. This implies that a signature from the verifier can be replayed across severaltransactions, so long as each transaction involves the same user calling the same address with the samegas values.
This is undesirable, as it gives the Zyfi API less control over the spending of its paymasters. This is espe-cially important in the ERC20SponsorPaymaster, because protocol sponsors are entrusting the verifier tomanage their ETH spending on-chain, which is more difficult with potential signature replays.
Recommendation: Introduce a nonce system in each paymaster. This nonce would be provided in thetransaction's paymasterInput, and each nonce would be invalidated by the paymaster after its first use.If this nonce is added to the hash computed by _isValidSignature(), all possibility of signature replay isprevented.
If a new nonce system increases transactions fees too much, consider incorporating the transaction'snonce value instead. For example, the _transaction.nonce value can be added to hash computed by
_isValidSignature(), and zkSync's own nonce tracking system will prevent signature replays.
Zyfi: Fixed in PR 8. We added a maxNonce check in ERC20SponsorPaymaster. We favoured this approachas it saves us from a storage read and write and gives us flexibility to adapt the "strictness" of the checkfrom the API side. For ERC20Paymaster we omitted the check as we consider any replayed transaction tobe a fair exchange between the paymaster ETH and the user token.
Cantina Managed: Verified.
With the ERC20Paymaster, signature replay concerns have been acknowledged. It's encouraged that theZyfi API only signs expirationTime values that are not far in the future. This will help maintain a fairexchange rate of ETH and ERC20 tokens on replayed signatures.
With the ERC20SponsorPaymaster, a maxNonce check has been added. It's encouraged that the Zyfi API signsthese values such that very few signature replays can happen. To facilitate this, the API should be aware ofthe specifics of zkSync's nonce system (where nonces aren't guaranteed to be monotonically increasing).

4

https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20Paymaster.sol#L198-L208
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol#L268-L280
https://github.com/ondefy/zyfi-paymaster/pull/8

3.2 Low Risk
3.2.1 No way to reset a protocol to use the defaultMarkup

Severity: Low Risk
Context: ERC20SponsorPaymaster.sol#L302-L304, ERC20SponsorPaymaster.sol#L391
Description: Once a protocol has a markup set, it is impossible to allow that protocol to use the defaultmarkup again due to the min of 50_00 in setMarkup. This would then require switching the protocol'saddress or manually resetting all "default" protocols everytime setDefaultMarkup is called.
Recommendation: If it is desirable to be able to set a protocol's markup and then return it to using thedefault, allow this case in setMarkup. For example:
function setMarkup(address _address, uint256 _newMarkup) public onlyOwner {

if (_newMarkup != 0 && _newMarkup < 50_00 || _newMarkup > 200_00)

revert Errors.InvalidMarkup();

markups[_address] = _newMarkup;

}

Zyfi: Fixed in PR 5 and commit e4014dd7.
Cantina Managed: Verified.
3.2.2 withdrawETH can be blocked

Severity: Low Risk
Context: ERC20Paymaster.sol#L244-L248, ERC20SponsorPaymaster.sol#L339-L343
Description: Users submit their transactions to the sequencer either directly or through a forcing mech-anism on L1. The sequencer then bundles those into blocks. Either through luck or in a worst case sce-nario through collusion with the sequencer a user could continue to submit transactions and front runcalls to withdrawETH causing attempts to withdraw all the ETH in the contract to fail (since validateAnd-

PayForPaymasterTransaction decrements the ETH in the contract) calls to it just before a call to with-

drawETH(toAddress, <Total-ETH>) would cause the withdraw to revert.
Recommendation: Add a withdrawAllETH() function the owner can call that will send the full balance ofETH in the contract. This is similar to what was implemented in the example paymaster.
Zyfi: We plan to migrate to new versions of Paymasters instead of using upgrades. Part of this migra-tion plan will be that the API stops serving transactions to an obsolete paymaster for the time beforedraining it which should eliminate the issue you described. The "precise" version was added to allow forpossible rebalancing between paymasters, without interrupting service. However, we are okay adding
withdrawAllETH() as a protection from this edge case. Fixed in PR 3.
Cantina Managed: Verified.
3.2.3 renounceOwnership implementation can block onlyOwner functions

Severity: Low Risk
Context: ERC20Paymaster.sol#L28, ERC20SponsorPaymaster.sol#L28
Description: OpenZeppelin'sOwnable contract implements a renounceOwnership function that allows theowner to set address(0) as the new owner. In addition to blocking any future assignment of ownership.This would block the following functions:

• ERC20Paymaster.sol:
– setVerifier

– withdrawETH

– withdrawERC20

– withdrawERC20Batch

• ERC20SponsorPaymaster.sol:

5

https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol#L302-L304
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol#L391
https://github.com/ondefy/zyfi-paymaster/pull/5
https://github.com/ondefy/zyfi-paymaster/commit/e4014dd7be349290d4be5d506bf349fb9487243d
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20Paymaster.sol#L244-L248
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol#L339-L343
https://github.com/matter-labs/paymaster-examples/blob/e77e7d00b67809b25118b9b2568acd8794f11f2b/contracts/contracts/paymasters/ERC20fixedPaymaster.sol#L122-L126
https://github.com/ondefy/zyfi-paymaster/pull/3
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20Paymaster.sol#L28
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol#L28
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20Paymaster.sol
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol

– setVerifier

– setVault

– withdrawETH

– withdrawERC20

– withdrawERC20Batch

– setMarkup

– setDefaultMarkup

Recommendation: Since even when shutting down the contract, locking the deposited ETH and ERC20payments is unwanted behavior that could be accidentally triggered, we would recommend overwriting
renounceOwnership. At aminimum, it probablymakes sense that it would withdraw the ETH to the currentowner, but you may want to consider the best way to handle the ERC20 token balances too. This maysimply be documenting the steps to occur before renounceOwnership is called.
Zyfi: We don't intend to call renounceOwnership on a working paymaster, and we canmaintain ownershipon a deprecated one. We overrode the function in PR 2.
Cantina Managed: Verified.
3.3 Gas Optimization
3.3.1 Gas savings

Severity: Gas Optimization
Context: ERC20Paymaster.sol#L50-L56, ERC20SponsorPaymaster.sol#L67-L73, SponsorshipVault.sol#L32-L35, SponsorshipVault.sol, ERC20Paymaster.sol#L41, ERC20SponsorPaymaster.sol#L38-L41
Description:

• Modifiers:

– ERC20Paymaster.sol#L50-L56
– ERC20SponsorPaymaster.sol#L67-L73
– SponsorshipVault.sol#L32-L35

Generally in Ethereum, there are some gas savings by moving modifier code from the modifier intoa function. Since when a contract is deployed, the modifier code is copied into each function thatuses it, this reduces the size of the code.
• Safe/Unchecked Math:

– SponsorshipVault.sol
In the SponsorshipVault all of the math operations (adding and subtracting from sponsor balances)should be able to be wrapped in unchecked blocks. Where the user is depositing or the Paymasteris refunding, that addition cannot approach type(uint256).max since it is dealing with ETH and
msg.value. The subtraction functions will already revert with Errors.NotEnoughFunds() if theamount to be subtracted is greater than the balance of the msg.sender.

• Constants:
– ERC20Paymaster.sol#L41
– ERC20SponsorPaymaster.sol#L38-L41

The zkSync Era's documentation on design recommendations specifically calls out a scenario whereit is better to reuse contract code and provides the example that constants are the better thing to dowith Ethereum, but passing constructor parameters instead in Era "leads to substantial fee savings".
Recommendation: We recommend you test the effects of these changes in the zkSync environment toensure they provide gas savings in Era.

• Example code for modifiers:

6

https://github.com/ondefy/zyfi-paymaster/pull/2
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20Paymaster.sol#L50-L56
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol#L67-L73
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/SponsorshipVault.sol#L32-L35
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/SponsorshipVault.sol#L32-L35
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/SponsorshipVault.sol
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20Paymaster.sol#L41
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol#L38-L41
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20Paymaster.sol#L50-L56
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol#L67-L73
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/SponsorshipVault.sol#L32-L35
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/SponsorshipVault.sol
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20Paymaster.sol#L41
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol#L38-L41
https://docs.zksync.io/build/developer-reference/fee-model.html#design-recommendations

modifier onlyBootloader() {

_checkBootloader();

// Continue execution if called from the bootloader.

_;

}

function _checkBootloader() internal view {

if (msg.sender != BOOTLOADER_FORMAL_ADDRESS) {

revert Errors.NotFromBootloader();

}

}

• Example for the unchecked:
function withdraw(uint256 amount) public {

if (amount > balances[msg.sender]) revert Errors.NotEnoughFunds();

unchecked {

balances[msg.sender] -= amount;

}

(bool sent,) = payable(msg.sender).call{value: amount}("");

if (!sent) revert Errors.FailedWithdrawal();

emit Withdrawn(msg.sender, amount);

}

• For the Constants: The added complexity of having to pass the NOMINATORs and version seems alittle awkward; however, we would recommend at least trying the change in your environment andevaluating if the gas savingswarrantsmaking the change (andwhether the savings is only on contractdeploy or also in transactions since the latter is much more important for this use case).
Zyfi: We didn't notice gas savings when changing the modifiers or the constant deployment, but we willkeep them in mind for future iterations.
We implemented the unchecked sections in PR 6.
Cantina Managed: Acknowledged and Verified.
3.4 Informational
3.4.1 Trust assumption considerations

Severity: Informational
Context: ERC20SponsorPaymaster.sol
Description: In the Zyfi Paymaster flow, each transaction involves on-chain validation of auser signature (included in _transaction.signature) and a Zyfi verifier signature (included in
_transaction.paymasterInput). This implies the exchange of funds is trustless for both the user and Zyfi.
In the ERC20SponsorPaymaster contract, there also exists the protocol sponsor. The protocol sponsor doesnot have a signature validated on-chain, and they instead rely on Zyfi's signature to appropriately use theirfunds.
If the Zyfi verifier were to become compromised, the sponsor could have its entire SponsorshipVaultbalance used in an undesired way. Indeed, by creating several wasteful transactions and forcing thesponsor to pay for themusing a sponsorshipRatio of 100%, the verifier could quickly drain the sponsor'sETH. In this scenario, a portion of thewasted ETHwould be returned to the paymaster in each transaction'soperator refund, in which case the paymaster owner could rescue a portion of the funds. However, therecoverable ETH would likely be only a fraction of the sponsor's initial balance.
A scenario where the paymaster owner becomes compromised is slightly worse, since they can change the
verifier to do the same griefing mentioned above, and would not be likely to return any of the refunds.
Recommendation: If it is important to validate the protocol sponsor's intentions on-chain, consider incor-porating a separate protocol signature in the ERC20SponsorPaymaster validation. If this is undesirable forUX or gas-efficiency reasons, consider encouraging protocols to not store a significant amount of fundsin the SponsorshipVault. Instead, protocols can reduce their trust requirements by keeping a smalleramount in the vault, and periodically topping up their balance as needed.

7

https://github.com/ondefy/zyfi-paymaster/pull/6
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol

Zyfi: We are glad that our paymasters are confirmed to be trustless for users, as it's a cornerstone of ourdesign. Based on current discussions, the trust assumptions for protocols are acceptable given the gassavings and simplicity they allow, but we will keep in mind the trustless alternatives for the future.
Cantina Managed: Acknowledged.
3.4.2 Refunds can be inaccurate

Severity: Informational
Context: ERC20Paymaster.sol#L158, ERC20SponsorPaymaster.sol#L208
Description: In zkSync, transaction refunds are based on two components:
1. The amount of gas that's still unused after the transaction execution completes.
2. The amount of ETH that's refunded from the zkSync operator, partially due to L1 gas prices affectingthe correctness of the L2 basefee and gasPricePerPubdata calculations.

In the current zkSync transaction flow, the bootloader is only aware of the first component when it calls
postTransaction() on the paymaster. This means that the _maxRefundedGas parameter can underesti-mate the amount of ETH being returned to the paymaster, and users may receive a smaller refund thanthey would otherwise expect.
Recommendation: Unfortunately, there is no easy fix for this issue. The zkSync operator refund amountis not accessible to the paymaster during the postTransaction() call. The refund is also not guaranteed,so it's not advisable for the paymaster to attempt to estimate it.
So, it is recommended to simply make note of this behavior, and potentially document it in the codecomments. If the _maxRefundedGas does not become more accurate in the future, it may also be worthexploring a periodic manual refund mechanism. This would require admin intervention and would bebased on off-chain calculations that have the full context of each transaction refund.
Zyfi: Acknowledged. Wewill monitor any changes on the zkSync stack that can help us improve the refundlogic.
Cantina Managed: Acknowledged.
3.4.3 Sponsorship refunds may fail

Severity: Informational
Context: ERC20SponsorPaymaster.sol#L221-L229
Description: In the native zkSync AA control flow, paymasters are refunded excess ETH left over from thetransaction's execution. The paymaster is notified of this refund in the postTransaction() function, andthe ERC20SponsorPaymaster uses this function to implement the following sponsorship refund:
if (requiredETHProtocol > 0) {

uint256 refundEthProtocol = (requiredETHProtocol *

_maxRefundedGas) / _transaction.gasLimit;

ISponsorshipVault(vault).refundSponsorship{

value: refundEthProtocol

}(protocolAddress);

}

Since the postTransaction() call happens before any ETH is refunded to the paymaster, it's possible thatthis code reverts due to insufficient funds. This is complicated further by the fact that _maxRefundedGasvalue is an argument from the bootloader that may be larger than the actual refund later received.
Recommendation: This issue could be partially mitigated by implementing a balancesmapping that canbe incremented on refunds and later withdrawn from. However, this would introduce added complexity,and would still not fully address discrepancies due to _maxRefundedGas differing from the actual refund.
So, it is instead recommended to simply make note of this behavior, possibly by documenting it in thecomments of postTransaction(). Since the paymaster already needs to maintain a buffer of ETH forregular usage, this behavior should rarely lead to a revert.
Zyfi: As discussed, this should not be an issue as Zyfi already needs to maintain an ETH buffer for regularuse.

8

https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20Paymaster.sol#L158
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol#L208
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol#L221-L229

Cantina Managed: Acknowledged.
3.4.4 No events are emitted in setMarkup()

Severity: Informational
Context: ERC20SponsorPaymaster.sol#L389-L394
Description: The setMarkup() function allows the ERC20SponsorPaymaster owner to set themarkup valueof a specific protocol address. No events are emitted when this function is called, so it is difficult for off-chain observers to monitor its usage.
Recommendation: Consider adding an event to be emitted in setMarkup().
Zyfi: Fixed in commit 488b7352.
Cantina Managed: Verified.
3.4.5 setVerifier lacks address(0)-check

Severity: Informational
Context: ERC20Paymaster.sol#L58-L61, ERC20Paymaster.sol#L228-L231, ERC20SponsorPaymaster.sol#L75-L81, ERC20SponsorPaymaster.sol#L314-L317
Description: If the verifier is set to address(0) the signature validation in validateAndPayForPaymas-

terTransaction will always revert.
Recommendation: This may be desirable as a way of shutting off the paymaster contract, but assum-ing the preferred way of doing upstream from the paymaster, consider adding a if (_verifier == ad-

dress(0)) revert Errors.InvalidAddress(); check to the appropriate places.
Zyfi: Agreed. Our plan to shut off a paymaster is not dependent on this, so we will add the protection.Fixed in PR 4.
Cantina Managed: Verified.

9

https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol#L389-L394
https://github.com/ondefy/zyfi-paymaster/commit/488b7352f0b99dbf1f7b85f7217a989a1753616f
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20Paymaster.sol#L58-L61
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20Paymaster.sol#L228-L231
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol#L75-L81
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol#L75-L81
https://github.com/ondefy/zyfi-paymaster/blob/e38bf16a53e9750f1bd74aa7cfb599fe8aa4f46d/contracts/ERC20SponsorPaymaster.sol#L314-L317
https://github.com/ondefy/zyfi-paymaster/pull/4/files

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	Medium Risk
	verifier signatures can be replayed

	Low Risk
	No way to reset a protocol to use the defaultMarkup
	withdrawETH can be blocked
	renounceOwnership implementation can block onlyOwner functions

	Gas Optimization
	Gas savings

	Informational
	Trust assumption considerations
	Refunds can be inaccurate
	Sponsorship refunds may fail
	No events are emitted in setMarkup()
	setVerifier lacks address(0)-check

